3D imagery has always fascinated people, from children to adults. 3D images have found applications from schools, in making learning interactive and intuitive, to sci-fi movies to deliver that unforgettable experience. The display industry has been striving to get 3D displays to the market for a long time but the quality is inconsistent and the price which such displays demand is very high.

In this project we have focused on making an Optically Rewritable paper (ORW), capable of displaying 3D images with high resolution, good contrast ratio, good retention times and zero power consumption. Unlike other e-paper technologies, this technology uses polarizing light to imprint images on the display.

Project overview

3D imagery has always fascinated people, from children to adults. 3D images have found applications from schools, in making learning interactive and intuitive, to sci-fi movies to deliver that unforgettable experience. The display industry has been striving to get 3D displays to the market for a long time but the quality is inconsistent and the price which such displays demand is very high.

In this project we have focused on making an Optically Rewritable paper (ORW), capable of displaying 3D images with high resolution, good contrast ratio, good retention times and zero power consumption. Unlike other e-paper technologies, this technology uses polarizing light to imprint images on the display.

Methodology

Design Phase

An optically rewritable display uses two substrates with different aligning materials so that one substrate is optically passive and the other is optically active. This configuration helps the ORW cell obtain a specified twist angle that corresponds to the transmission level defined by the initial polarizers’ configuration.

Implementation Phase

ORW cell Fabrication

3D writing procedure

Features of ORW Display

It can be used as a display for security cards, such as credit cards, Octopus cards or ID cards and also as signages or even for security purposes.

Results

Grey Scales

Cells with a 2D image

3D image using polarizing glasses