Peer-to-Peer Video-on-Demand System Over the Internet

Project Code: TD2-09

Student: Chen Yaxi

Supervisor: Prof. Danny H.K Tsang

Abstract

In recent years, internet video applications, such as video communication and video on demand, have become highly demanded. As video streaming occupies a large fraction of internet traffic, it is necessary to find proper approaches to deliver video content to a large amount of clients. With the development of distributed computing, peer-to-peer [P2P] based video on demand (VoD) systems have been widely employed to meet the increasing demand.

This project aims to develop a peer-to-peer system, which supports the video on demand services, it allows peers to watch videos with small delay. Moreover, with the P2P structure, the network could achieve a sustainable decentralization. Thus, the combination of VoD media server and P2P network is the core of this project.

System Overview

This system consists of three functional parts, which are server, bootstrap nodes and clients.

System Components

Server Side

- VLC Central Streaming Block: Where a new bootstrap node joins the network, it will use VLC centralized video to receive media files from the bootstrap node assigned.
- Client Communication Block: It will collect clients’ information and send program information and bootstrap information to them.
- Bootstrap Communication Block: It will communicate with bootstrap node to record its detailed information, such as IP address and port number. It will also deliver the mapping between bootstrap node and program information.

Bootstrap Nodes

- Server Communication Block: It collects media information and peer information from server side and report server the client’s information.
- Client Communication Block: It will maintain the clients’ information, so that to construct the network.
- P2P Communication Block: It will distribute and receive TCP packets within the subnet.

Conclusion

This peer-to-peer architecture and video on demand service have been studied. VLC player has been employed as the streaming tool. The peer-to-peer architecture has been actualized by PeerTo overlay in each subnet. Each subnet can support a large number of viewers watching at the same time. The video-on-demand service is implemented by the hybrid structure, which dramatically reduces the workload of system server side. Various coding schemes are supported by this system.