Vision-Based Navigation for UAV Helicopter

Project Code: LZ3-06
Supervisor: Prof. Li, Zexiang Ma, Zhongdan
03738921
Introduction

The autonomous Unmanned Aerial Vehicle (UAV) is an aircraft controlled by the on-board intelligence and computing power.

UAV Applications:

- Search
- Rescue
- Surveillance
- Remote inspection
- Film making

To perform these tasks:

- *Vision system* is essential because vision provides a natural sensing modality for feature detection and tracking.

- *Helicopters* have advantages because they are highly maneuverable with the ability to fly at low speed, fly laterally, hover in one place and perform maneuvers in narrow spaces.
Overview

- The purpose of this study is to explore a vision-based navigation algorithm for an autonomous UAV helicopter.
- We focus on how to obtain navigational information from a 3 dimensional perspective so that the helicopter can behave in an intelligent way.
- Three methods are used to obtain 3-D information, which is very different from the obtaining 2-D images.

Stereo
Stereo is using two cameras to extract range data, which is also referred to as binocular Vision.

Single View Metrology
Single View Metrology means obtaining measurements of scene structures from a single image. This is the basic geometry of single view metrology:

Optical Flow
Optical flow is the apparent motion of the brightness pattern, which ideally will correspond to the velocity field.
Key Results

Implementation of Single View Metrology

Using *single view metrology*, we can calculate:

- Vanishing points and vanishing lines
- Camera height
- Linked height

Vanishing Point V_2 (-13098, -8924.17)
Vanishing Point V_1 (1377.51, -992.171)

Vanishing Line

(0,0)