Department of Electrical and Electronic Engineering, HKUST

Final Year Project (2003-2004)

Financial Data Analysis/Prediction based on Filter Bank Decomposition (BZ3-03)

Project Members:
Lok Shun Hang 01029534
Leung Wai Ting 01493137
Choi Ting Hong 01442592

Supervisor:
Dr. Zeng Bing
Think of the billions of business transactions going on every day in the stock market, would it be wonderful if we could predict future market price of a stock? This idea had motivated the proposal of our project – to predict future price of a stock given its past recorded prices.

The methodology is to combine traditional predictor with filter bank decomposition in order to make better predictions. In other words, its predictions have a smaller mean square error (MSE) or mean absolute error (MAE).

A software package, which is a graphical user interface (GUI), has been developed in MATLAB. The interface includes all the necessary functions to import data, decompose the data and comparing the direct approach in figure 1 with the decomposed approach in figure 2.
Block Diagrams

Figure 1: The direct approach (for example, linear predictor)

- $X(n)$: input financial data
- $Y(n)$: predicted data sequence
- P: predictor

Figure 2: The decomposed approach, with M channels decomposition

- M: moving average filter to remove trend
- H_i: the i^{th} analysis filter, for $0 \leq i \leq M-1$
- P_i: the i^{th} predictor (e.g., linear predictor)
- $Y(n)$: predicted sequence

Figure 3: M channels decomposition process

- $X_i(n)$: reconstructed financial data
- $X(n)$: input financial data

For perfect reconstruction, $X_i(n) = X(n)$ for all values of n
Results

<table>
<thead>
<tr>
<th></th>
<th>Without decomposition</th>
<th>With decomposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAE</td>
<td>0.298</td>
<td>0.053</td>
</tr>
<tr>
<td>MSE</td>
<td>0.22</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Figure 4: A simulation example, with 16 channels filter bank

Figure 5: The Graphical User Interface (GUI)