Modeling of double gate MOSFETs

<table>
<thead>
<tr>
<th>Project ID number:</th>
<th>PV1-02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Supervisor:</td>
<td>Prof. Vincent M. C. Poon</td>
</tr>
<tr>
<td>Name of the Students:</td>
<td>Lam Pui Chung 00011592, Yau Kin Hung 00220193</td>
</tr>
</tbody>
</table>
Aim and objectives

Our aim is to carry out simulations of double gate (DG) MOSFETs. The objectives are to improve the performance of MOSFETs by studying the MOSFETs with double gate.

Introduction

DG MOSFET have many potential advantages over single gate (SG) MOSFET. This project is a simulation-based project to model the performance of DG MOSFETs. We choose the software, Medici, to construct, design, simulate and test the MOSFETs. Newly designed SG and DG MOSFETs were constructed.

Background

What is double gate MOSFETs?
- New type of MOSFET
- Similar to Single Gate MOSFET
- Top gate and Bottom gate

Advantages of DG MOSFETs
- Smaller in size
- More applications
- OR gate on single MOSFET
- Separate control of both gates.
- Reduced short channel effects
- High channel mobility
- Better electrostatic control of channel and scaling potential
- Reduction of the sub-threshold slope

Experiments
- 1nm-5nm Oxide thickness
- 10nm-20nm Silicon thickness
- 100nm-500nm Channel lengths

Structures

Structure of single gate MOSFET

Structure of double gate MOSFET
Double gate MOSFETs with smaller size and better performance compared with SG MOSFET have been obtained. The DG MOSFETs can have separate control of both gates by different voltages, higher channel mobility and higher Idsat, and better short channel effect with small channel length, Si and oxide thickness. The saturation drain currents of DG MOSFETs are nearly two times of that of SG MOSFETs, giving a better current drive.
Potential contours of single gate MOSFETs with channel lengths from 50nm to 500nm

Potential contours of double gate MOSFETs with channel lengths from 50nm to 500nm

Comparison of Saturation Drain Current (Idsat) versus Saturation Drain Voltage (Vdsat) of Single gate MOSFET and double gate MOSFET of Channel Length 450nm.

Drain Current (Id) versus Gate Voltage (Vg) with Drain to Source Voltage(Vds)=2V of single gate MOSFET and double gate MOSFET with oxide thickness=5nm

Double Gate MOSFETs with Vds=2V, si=20nm, with different oxide thickness

Comparison of Double Gate Threshold Voltage vs Channel Length, Vds=2V of bg=-5 and bg=-3, with top gate set from -3V to 2V and top gate with bottom gate applied same voltage from -3V to 2V